大理大学学报 ›› 2021, Vol. 6 ›› Issue (6): 1-4.DOI: 10. 3969 / j. issn. 2096-2266. 2021. 06. 001

• 数学与计算机科学 •    下一篇

由单调函数y = f (x)确定的数列xn + 1 = f (xn )收敛性

  

  1. 合肥职业技术学院基础教育学院,合肥238000
  • 收稿日期:2020-06-19 修回日期:2020-10-10 出版日期:2021-06-15 发布日期:2021-06-24
  • 作者简介:张友梅,副教授,主要从事高职教育教学、泛函微分方程研究。
  • 基金资助:
    安徽省级质量工程项目(2019jyxm0838)

Convergence xn + 1 = f ( xn ) of Sequence Determined by Monotonic Function y = f ( x )

  1. Department of Education, Hefei Vocational and Technical College, Hefei 238000, China
  • Received:2020-06-19 Revised:2020-10-10 Online:2021-06-15 Published:2021-06-24

摘要: 针对一类由函数y = f (x)所确定的递推数列xn + 1 = f (xn ),n = 0,1,2,⋯为研究对象,假设f (x)具有单调性,在没有通项公式的情况下,给出了数列{xn}敛散性的判别方法,并总结了判别方法的一般规律,最后给出具体应用以验证方法的有效性和可行性。

关键词: 单调函数, 递推数列, 收敛性, 判别

Abstract: This article takes a type of recursive sequence xn + 1 = f (xn ),n = 0,1,2,⋯, determined by a function y = f(x)as the research object. Assuming that f(x)is monotonic, and in the absence of a general term formula, the method for judging the convergence and divergence of the sequence of {xn} is proposed, and the general law of the judgment method is summarized. Finally, specific applications are given to verify the effectiveness and feasibility of the method.

中图分类号: